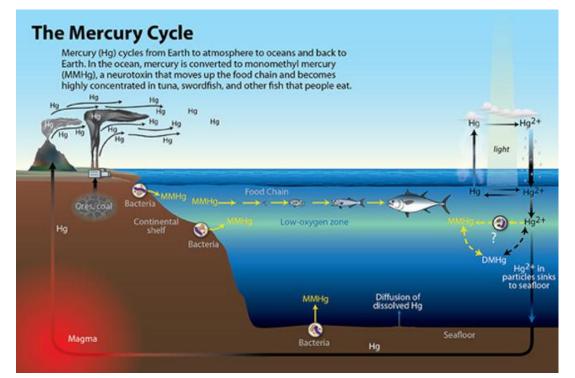
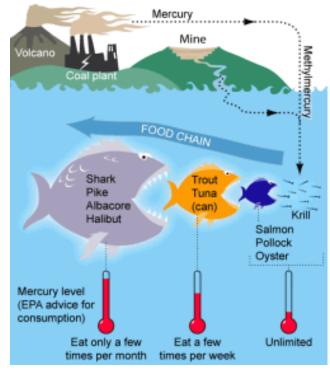


What do we know regarding the biomagnification process?

- Sulfate (SO_4^{2-}) + low-to-no dissolved oxygen (O_2) increases activity of sulfate-reducing bacteria (SRB);
- SRB in the presence of inorganic mercury (Hg²⁺) generate methyl mercury (CH₃Hg⁺) as an accident/by-product of respiration;
- Methyl mercury is retained in biological tissue more significantly than inorganic mercury because of the additional –CH₃ (methyl) group;
- Bioaccumulation of methyl mercury occurs because the depuration (loss) rate of methyl mercury from biological tissue is much lower/slower than the loss rate of inorganic mercury;
- Biomagnification happens through the trophic transfer of bioaccumulated methyl mercury from small prey species to larger prey (or predator) species to largest predator species (including humans)

Zhang et al., 2020, https://doi.org/10.1029/2019GB006348


100 A cat Yang Elsie 100.5 Paging India A cat Yang India A cat Yang


A Global Model for Methylmercury Formation and Uptake at the Base of Marine Food Webs

Yanxu Zhang^{1,2} (i), Anne L. Soerensen^{2,3,4} (ii), Amina T. Schartup^{2,3,5} (iii), and Elsie M. Sunderland^{2,3} (iii)

¹Joint International Research Laboratory of Atmospheric and Earth System Sciences, School of Atmospheric Sciences, Nasjing Oilnewsity, Nasjing, China, ²Harvard John A. Paulson School of Engineering & Applied Sciences, Harvard University, Cambing, Ma, USA, ²Department of Environmental Health, Harvard T. H. Chan School of Public Health, Harvard University, Gaston, MA, USA, ²Department of Environmental Science and Analytical Chemistry, Stockholm University, Scotcholm, Sweden, ⁵Scripp institution of Coenography, La John, CA, USA

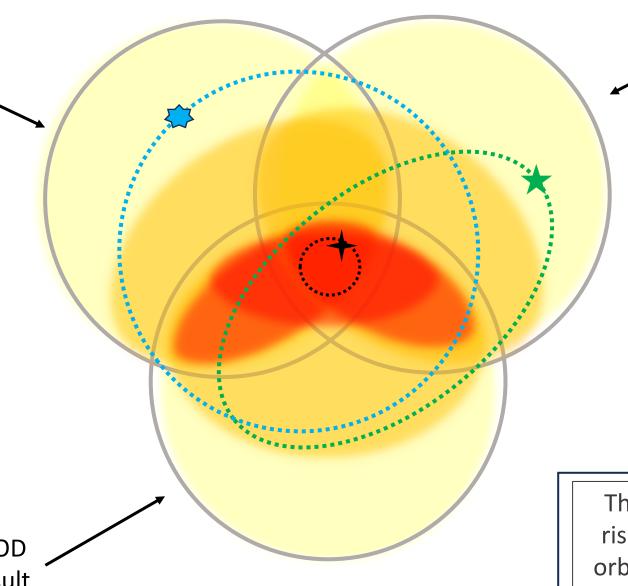
 $\textbf{Abstract} \ \ \text{Monomethylmercury} \ (\text{CH}_3\text{Hg}) \ \text{is the only form of mercury} \ (\text{Hg}) \ \text{known to biomagnify in food}$ webs. Here we investigate factors driving methylated mercury [MeHg = $\text{CH}_3\text{Hg} + (\text{CH}_3)_2\text{Hg})$] production and degradation across the global ocean and uptake and trophic transfer at the base of marine food webs. We develop a new global 3-D simulation of MeHg in seawater and phyto/zooplankton within the Massachusetts Institute of Technology general circulation model. We find that high modeled MeHg concentrations in polar regions are driven by reduced demethylation due to lower solar radiation and colder temperatures. In the eastern tropical subsurface waters of the Atlantic and Pacific Oceans, the model results suggest that high MeHg concentrations are associated with enhanced microbial activity and atmospheric inputs of inorganic Hg. Global budget analysis indicates that upward advection/diffusion from subsurface ocean provides 17% of MeHg in the surface ocean. Modeled open ocean phytoplankton concentrations are relatively uniform because lowest modeled seawater MeHg concentrations occur in oligotrophic regions with the smallest size classes of phytoplankton, with relatively high uptake of MeHg and vice versa. Diatoms and synechococcus are the two most important phytoplankton categories for transferring MeHg from seawater to herbivorous zooplankton, contributing 35% and 25%, respectively. Modeled ratios of MeHg concentrations between herbivorous zooplankton and phytoplankton are 0.74-0.78 for picoplankton (i.e., no biomagnification) and 2.6-4.5 for eukaryotic phytoplankton. The spatial distribution of the trophic magnification factor is largely determined by the zooplankton concentrations. Changing ocean biogeochemistry resulting from climate change is expected to have a significant impact on marine MeHe formation and bioaccumulation.

Think about **risk profiles** for different locations in terms of:

- <u>Physical factors</u> what is the burial rate of contamination based on the geological background (i.e., how much sediment is available for burying contamination quickly to a depth below the biological mixed depth or biologically active zone?); how to hydrodynamics impact stable burial?
- <u>Chemical factors</u> what factors are present that can create the conditions in which SRB are active? Factors of concern are those that contribute sulfate (SO_4^{2-}) and biochemical oxygen demand (BOD) such that significant O_2 consumption occurs. Factors can be anthropogenic but aren't always.
- <u>Biological factors</u> what are the species of concern and what do trophic transfer pathways look like? For human health concerns, what are the frequency and frameworks for consumption (i.e, recreational and infrequent vs frequent and culturally or socio-economically significant)?

PHYSICAL

Sufficient sedimentation and low erosion potential to allow for stable burial


→ = Wabigoon River, ON

= Penobscot River, ME

=

CHEMICAL

Factors that contribute BOD and sulfate (SO_4^{2-}) and result in O_2 consumption

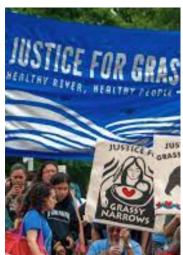
BIOLOGICAL

Multi-trophic level food chains with a top predator species that is frequently consumed

Think of this overview of risk profiles as describing orbits around a worst-case ecological and human health scenario

Site Comparison

Penobscot River Estuary, Maine


- Glaciated terrain and low sed. rates (~ 0.5 cm/yr)
- Lobster as a TL2 species; in terms of frequency, consumption is not culturally significant; TL4 specie is American eel – may be an ecological concern, but not an acute HH concern.
- Biogeochemical concerns due to wood waste elevated % methylation on marshes; most concerning trophic transfer pathway to marsh species is via terrestrial food web for migratory songbirds.
- Surface sediment concentrations < 10 mg/kg in vicinity of site and < 1 mg/kg across majority of the estuary.
- No acute, severe or obvious human health concerns; species of greatest consumption are lobster and ducks, both of which have consumption restrictions in place via licensing structure/programs.

Wabigoon River, Ontario

- Glaciated terrain and very low sed. rates (~ 0.3 cm /yr)
- Walleye and Northern pike as TL4 species; consumption is culturally significant
- Mill effluent renders the river suboxic/anoxic in summer; stratification of an in-river lake contributes to > 2 ug/g in walleye.
- Surface sediment mercury concentrations exceed 50 mg/kg in vicinity of mill and are elevated consistently > 1 mg/kg for a distance of ~ 40 miles downstream.
- Human health impacts are acute, severe and with multi-generational manifestation; fish are consumed whether or not a consumption restriction is in place.

Grassy Narrows ANA Community – This is Living Downstream

Health in Grassy Narrows 'significantly worse' than other First Nations: report

Grassy Narrows ANA Community

Research

A Section 508-conformant HTML version of this article is available at https://doi.org/10.1289/EHP11301.

The Contribution across Three Generations of Mercury Exposure to Attempted Suicide among Children and Youth in Grassy Narrows First Nation, Canada: An Intergenerational Analysis

Donna Mergler,1 Aline Philibert,1 Myriam Fillion,2,1 and Judy Da Silva3

Mercury exposure and premature mortality in the Grassy Narrows First Nation community: a retrospective longitudinal study

Aline Philibert, Myriam Fillion, Donna Mergler

Summary

Background Little is known about the influence of toxic exposures on reduced life expectancy in First Nations people in Canada. The Grassy Narrows First Nation community have lived with the consequences of one of the worst environmental disasters in Canadian history. In the early 1960s, 10 000 kg of mercury (Hg) was released into their aquatic ecosystem. Although Hg concentration in fish, their dietary staple, decreased over time, it remains high. We aimed to examine whether elevated Hg exposure over time contributes to premature mortality (younger than 60 years) in this community.

Methods We did longitudinal and case-control analyses with data for individuals of the Grassy Narrows First Nation community. In 2019, the community obtained their historical Hg biomarker data from a government surveillance programme, which was then shared with the authors. A matched-pair approach allowed us to compare longitudinal hair Hg concentration between cases (individuals who died aged younger than 60 years) and controls (individuals who lived beyond 60 years). Matching criteria included year of birth (allowing 2 years either side), sex, and a minimum of four hair Hg concentration measures, of which at least two were in the same year. Analyses included change-point detection, interrupted time series, mixed models, and Cox survival models.

Findings We analysed data collected between Jan 1, 1970, and Jan 31, 1997, for 657 individuals (319 women and 338 men, born between 1884 and 1991) for whom we assembled a retrospective database of yearly measures of hair Hg concentration (n=3603). Hair Hg concentration decreased over time. A subgroup of 222 individuals (107 women and 115 men) reached or could have reached 60 years old by August, 2019. There was an increased risk of dying at a younger age among those with at least one hair Hg measure of 15 μ /g/g or more (adjusted hazard ratio 1·55, 95% CI 1·11-2·16; p=0·0088). Among the deceased individuals (n=154), longevity decreased by 1 year with every 6·25 μ /g/g (4·35-14·29) increase in hair Hg concentration. Analyses of 36 matched pairs showed that hair Hg concentration of those who died aged younger than 60 years was 4·7 μ /g/g higher (3·4-5·9) than controls.

Interpretation The consistent findings between our different analyses support an association between long-term Hg exposure from freshwater fish consumption and premature mortality in this First Nation community. There is a need to do risk-benefit analyses of freshwater fish consumption in environmentally contaminated regions.

oa

Lancet Planet Health 2020;

This online publication has been corrected. The corrected version first appeared at thelancet.com/planetaryhealth on May 11, 2020, and further corrections have been made on July 15, 2020

Université du Québec à

Montréal, Centre de recherch

interdisciplinaire sur le bien-être, la santé, la société et l'environnement (Cinbiose), Montréal, QC, Canada (A Philibert PhD, Prof M Fillion PhD, Prof D Mergler PhD); and Département Science et

Technologie, Université TÉLUQ, Montréal, QC, Canada (Prof M Fillion) Correspondence to: Prof Donna Mergler, Centre de recherche interdisciplinaire sur le

Prof Donna Mergler, Centre de recherche interdisciplinaire sur le bien-être, la santé, la société et l'environnement (Cinbiose), Université du Québec à Montréal, Montréal, QC H3C 3P8, Canada mergler.donna@uqam.ca

CANADA

Ontario knew about Grassy Narrows mercury site for decades, but kept it secret Toronto Star November 11, 2017

ssy Narrows First Nation was

A confidential 2016 report says provincial officials were told in the 1990s that the site of a paper mill near Grassy Narrows First Nation was contaminated with mercury — and that the poison is likely still present.

Walleye (1970 – 2017)



TABLE 7.1. Annual mercury discharges from the chlor-alkali plant, Great Lakes Forest Products Limited, Dryden.

Year	Mercury Loss (kg)
1962-69	1100
1970	350
1971	9.1
1972	2.3
1973	2.1
1974	1.7
1975	2.0
1976	1.2

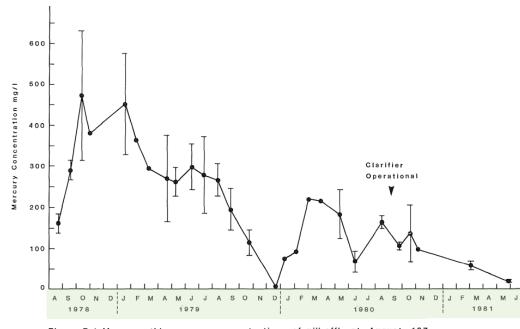


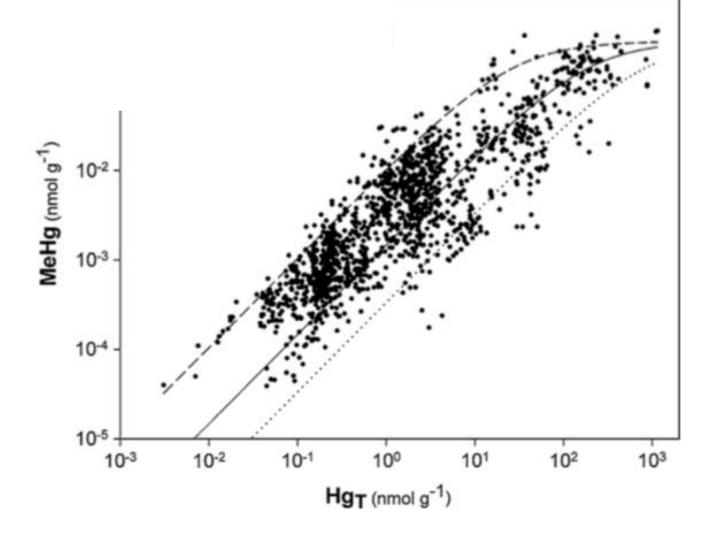
Figure 7.1 Mean monthly mercury concentrations of mill effluent, August, 197

Waste from mill worsening mercury contamination in river near Grassy Narrows: study

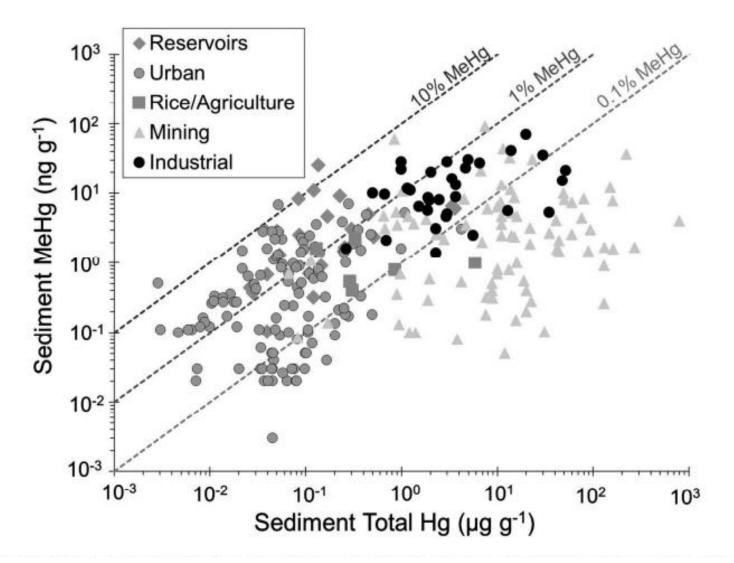
Grassy Narrows chief calls out Ottawa for 'ridiculous' delays to mercury treatment centre construction

Trudeau said 'money is not the objection' to building the centre during 2019 election debate

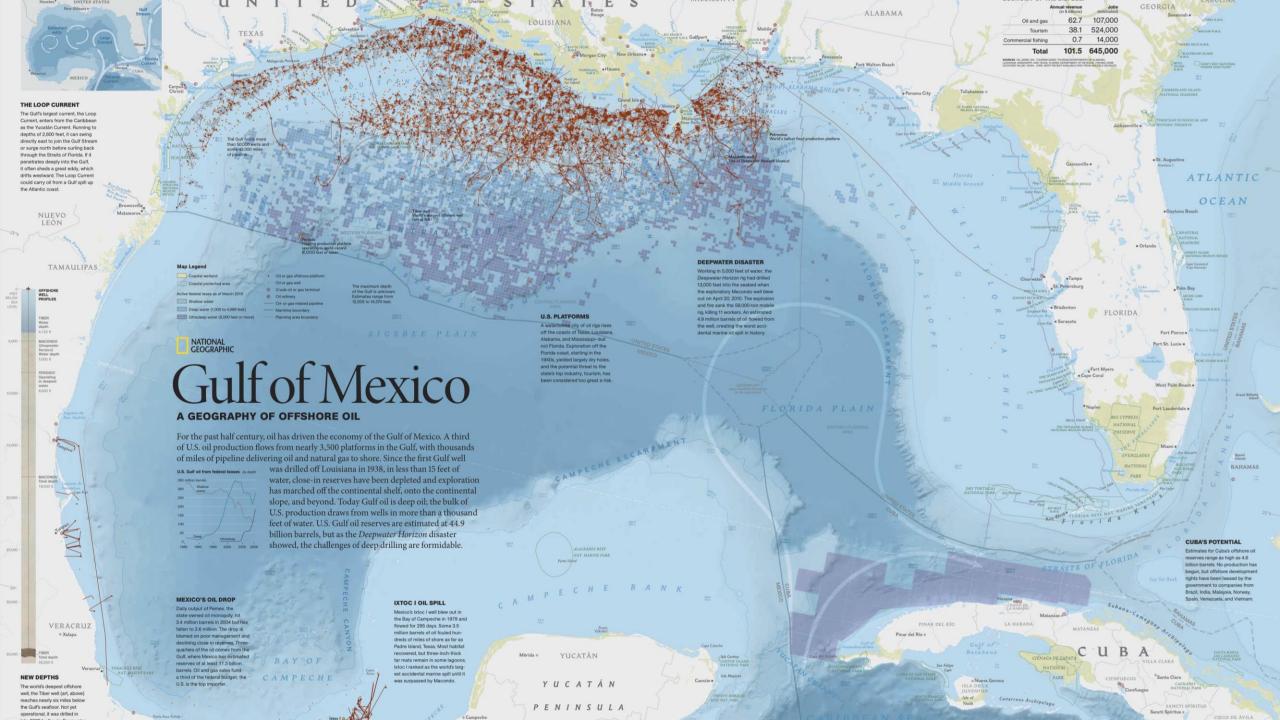
Brett Forester · CBC News · Posted: Feb 16, 2024 12:42 PM EST | Last Updated: February 16


 $Rudy\ Turtle, chief of\ Grassy\ Narrows\ First\ Nation, addresses\ a\ rally\ against\ mining\ proposals\ on\ First\ Nations\ territory\ in\ Toronto\ in\ July\ 2023.\ (Evan\ Mitsui/CBC)$

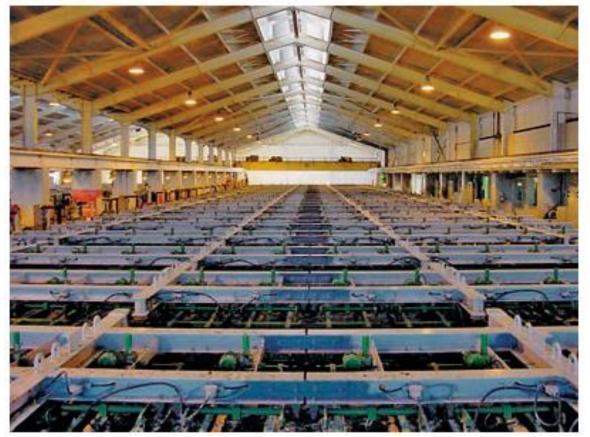
Industrial discharge from a paper mill in northern Ontario is exacerbating mercury contamination in a river system near a First Nation that has been plagued with mercury poisoning for decades, a new study suggests. Grassy Narrows Chief Rudy Turtle holds a sign as he marches with supporters through downtown Toronto in a 2019 handout photo.

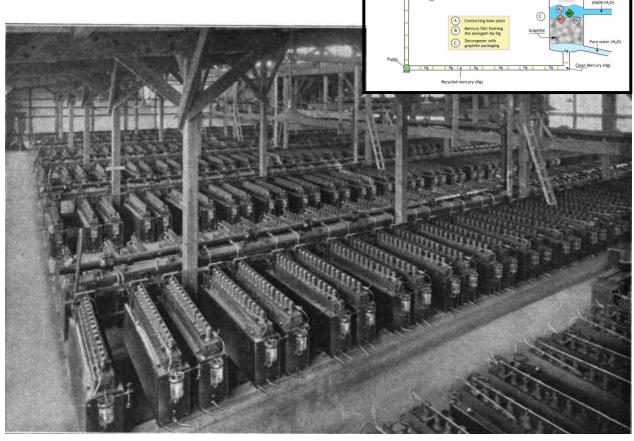

Relationship between total mercury (Hg_T) and methyl mercury (MeHg) in **sediment**

- 1400 data pairs
- Salinity continuum
- Range in organic carbon concentration and quality
- Range in level of contamination
- Variable sources


Note that the relationship in this graph is descriptive of sampling conditions; it is not predictive of remedial response (meaning: we should be careful of trying to over-specify the extent to which decreasing Hg_T necessarily results in predictable declines in MeHg).

How Do These Data Distribute by Source/Type of Environment?




Note that the relationships in this graph are descriptive of sampling conditions; they are not predictive of remedial response (meaning: we should be careful of trying to overspecify the extent to which decreasing Hg_T necessarily results in predictable declines in MeHg).

Mercury cell chlor-alkali process

$$2\text{NaCl} + 2\text{H}_2\text{O} + * \rightarrow 2\text{NaOH} + \text{Cl}_2 + \text{H}_2$$

Facility operations commonly released ~ 10 tons of mercury into adjacent waters (plus unquantified volumes into the atmosphere)

Locations of Former or Current Mercury Cell Chlor-Alkali Facilities

Acme, NC Ashtabula, OH Augusta, GA Bellingham Bay, WA Berlin, NH Brunswick, GA Calvert City, KY Charleston, TN Deer Park, TX Delaware City, DE East St. Louis, IL Lake Charles, LA Lavaca Bay, TX Lemoyne, AL Linden, NJ McIntosh, AL Midland, MI Mobile, AL Moundsville, WV Muscle Shoals, AL New Castle, DF New Martinsville, WV Orrington, ME St. Gabriel, LA Syracuse, NY

Dalhousie, NB Saguenay, Quebec Beauharnois, Quebec

Marathon, ON Cornwall, ON Sarnia, ON Dryden, ON Ontario - 5

Port Abercrombie, NS Squamish, BC

Coatzacoalcos-Minatitlán, Mexico García Nuevo León, Mexico Santa Clara, Mexico Sagua la Grande, Cuba Cartagena, Colombia

Colombia -2

Botafogo River estuary, Brazil

Ribeira Bay, Brazil Santos- Cubatão, Brazil

Acari-São João de Meriti River, Brazil Cinco Saltos / Upper Negro River, Argentina

Bahia Blanca, Argentina

Argentina -3

Montevideo, Uruguay

Peru-1 Peru-2 Algeria-1 Algeria-2 Angola-1 Libya-1 Morocco-1

Bohus, Sweden Stenungsund, Sweden Skoghall, Sweden Domsjø, Sweden Koepmanholmen, Sweden

Sweden-6

Sarpsborg, Norway Kokemäenjoki, Finland Oulu, Finland

Aetna, Finland Kuusankoski, Finland Pallanza Bay, Italy Priolo, Italy Augusta Bay, Italy Montova, Italy Tavazzano, Italy Gela. Italy

Saline di Volterra Italy Rosignano Solvay, Italy

Brescia, Italy Bussi, Italy

Pieve Vergonte, Italy Volterra, Italy Toreviscosa, Italy

Porto Marghera/Venice, Italy

Ravenna, İtaly
Hallein, Austria
Brückl, Austria
Vieux-Thann, France
Tavaux, France
St. Auban, France
Jarrie, France
Loos, France
Lavèra, France
Jemeppe, Belgium
Antwerp, Belgium
Linne Herten, Netherlands
Hengelo, Netherlands

Slovenia -1 Slovenia -2 Bosnia - 1 Serbia -1 Montenegro -1 Switzerland-1 Fermoy, Ireland Runcorn, UK Sandbach, UK Staveley, UK Fleetwood, UK

Locations of Former or Current Mercury Cell Chlor-Alkali Facilities

Ellesmere Port UK Torrelavega, Spain Vilaseca, Spain Huelva, Spain Flix, Spain Jodar, Spain Monzon, Spain Hernani, Spain Sabinanigo/Huesca, Spain Povoa de Santa Ir., Portugal Ria de Aveiro, Portugal Thessaloniki, Greece Bitterfeld, GR Burghausen, GR Dormagen, GR Frankfurt, GR Gendorf, GR Gersthofen, GR Ibbenbüren, GR

Ibbenbüren, GR
Knapsack, GR
Krefeld-Uerdingen, GR
Lampertheim, GR
Leverkusen, GR
Ludwigshafen, GR
Lülsdorf, GR (×2)
Marl, GR (×2)
Marktredwitz, GR

Marktredwitz, GR
Rheinfelden, GR
Schkopau, GR
Schkopau, GR
Uerdingen, GR
Wilhelmshafen, GR
Neratovice, Czech Republic
Ústi nad Labem, Czech Republic

Pardubice, Czech Republic Nováky, Slovakia Tarnów, Poland Bydgoszcz, Poland Włocławek, Poland Brzeg Dony, Poland (?) Varna, Bulgaria Kazincbarcika, Hungary Ramnicu Valcea, Romania

Vlora, Albania Kyiv, Ukraine Kalush, Ukrainę (?)

Kirovo-Chepetsk, Russia Sterlitamak, Russia (possibly ×2) Volgograd, Russia (possibly ×2)

Sayansk, Russia Ufa, Russia

Dzerzhinsk, Russia Novodvinsk, Russia Chapaevsk, Russia Irkutsk, Russia Komsomolsk-on-Amur, Russia Usolye-Sibirskoye, Russia Koryazhma, Russia

Yavan, Tajikistan Turkmenistan -1 Sumgait, Azerbajain Pavlodar, Kazakhstan Temirtau, Kazakhstan

Bandar Imam, Iran Kor River site, Iran (?)

Iran -3 Iran -4 Iraq -1 Iraq -2 Iraq -3 Israel-1 Syria-1

United Arab Emirates-1

Alroli, India Mumbai, India Ganjam, India Singrauli, India India -5

India -5 India -6 India -7

Kala Shah Kaku, Pakistan

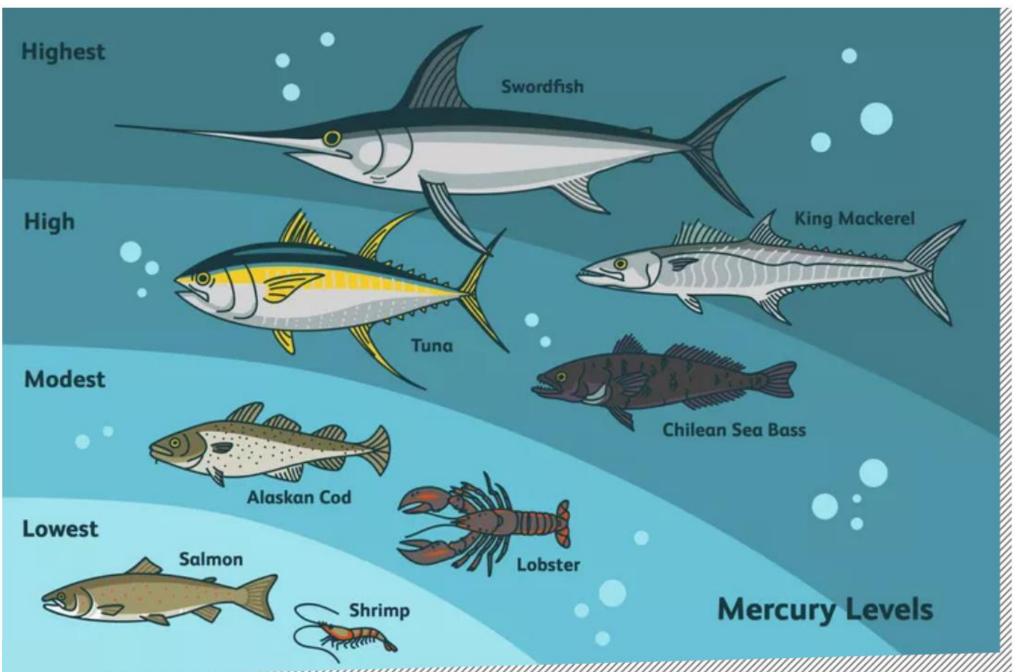
Myanmar -1

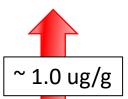
Minamata Bay, Japan

Niigata, Japan Omi, Japan Arai/Kosai, Japan Uto, Japan An Ning, China Huludao, China Tianjin, China Yongjing, China Qingzhen, China Jilin City, China

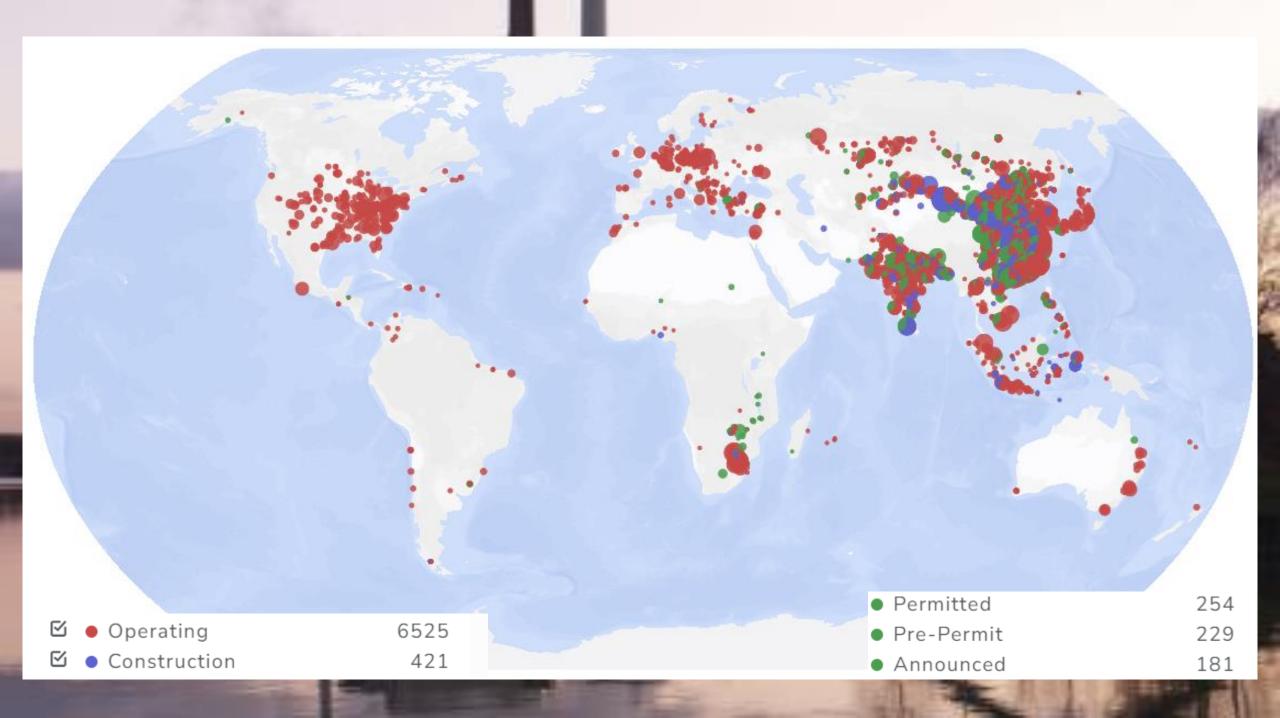
China-7
China-8
Indonesia-1
Indonesia-2
Indonesia-3
Indonesia-4
Indonesia-5
Phillipines-1

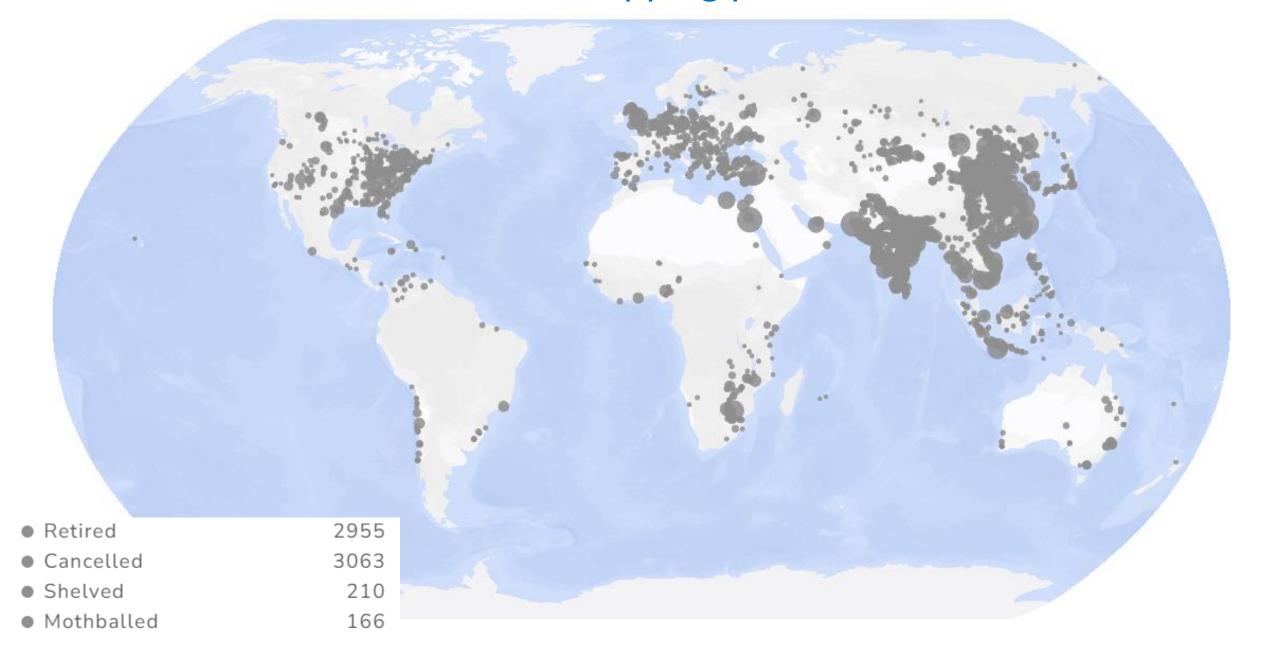
Hamhung, North Korea


North Korea-2


Chlor-Alkali Facility – identified Chlor-Alkali Facility – not confirmed Acetaldehyde Facility – identified

- The Penobscot River is the second largest river system in New England
- The estuary is:
 - ~20 miles long
 - 12 ft tidal range
- Seasonally variable discharge:
 - 5000 60,000 cfs
- Glaciated terrain and a long narrow river channel upgradient of Frankfort
- A mercury cell chlor-alkali facility
 operated in the estuary from 1967 2000
- Preceding history of wood products industry complicates remediation of the estuary and extends a recovery timeline to 70+ years




So, where is oceanic mercury coming from??

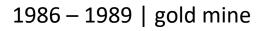
~ 0.2 ug/g

Also...is this what a tipping point looks like...?

And on a smaller (individually) but no less dangerous (individually AND globally) scale....

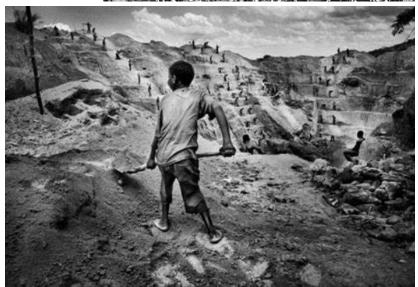
Artisanal and Small-Scale Gold Mining (ASGM)

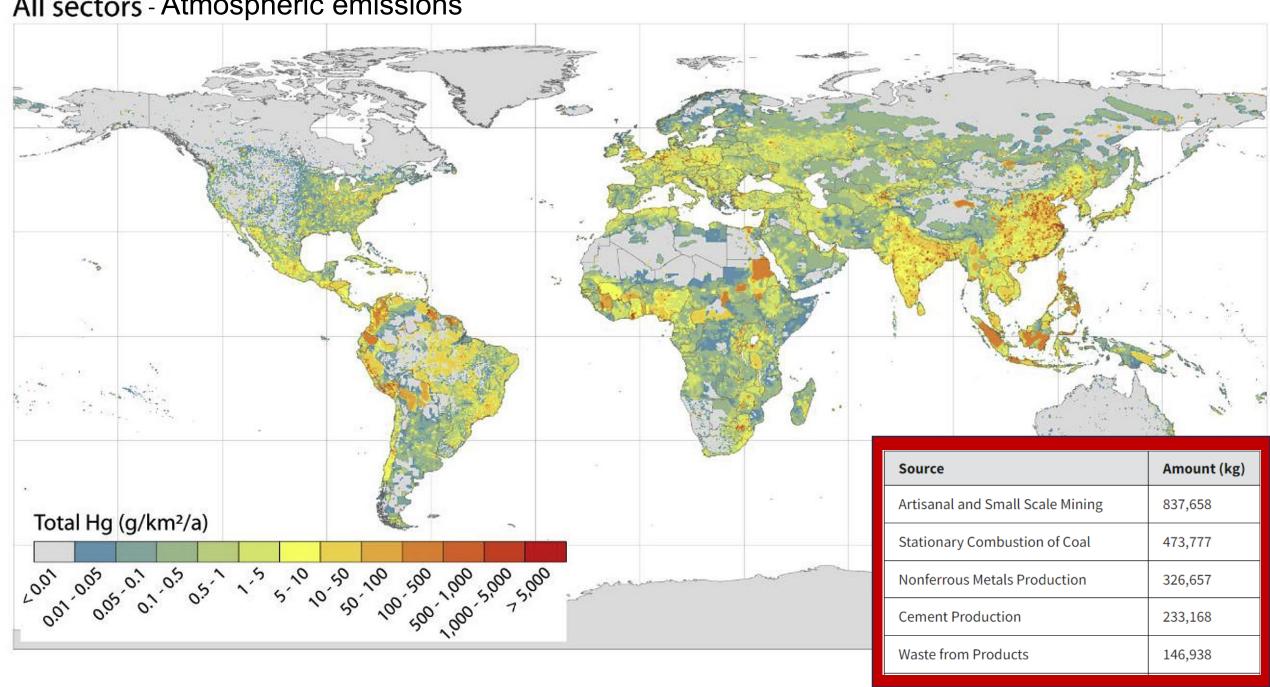
(gold mining is extraordinarily dangerous for those who have to feed their families this way....)



Serra Pelada, Brazil

Photographer: Sebastiao Salgado (1944 - 2025)





All sectors - Atmospheric emissions

LETTER

doi:10.1038/nature13563

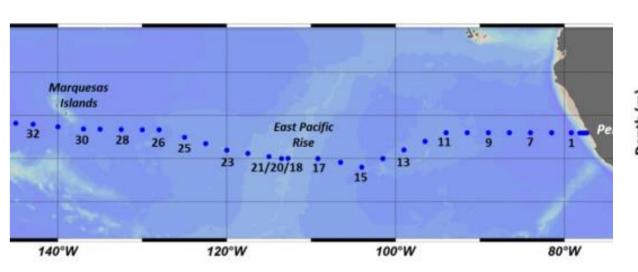
A global ocean inventory of anthropogenic mercury based on water column measurements

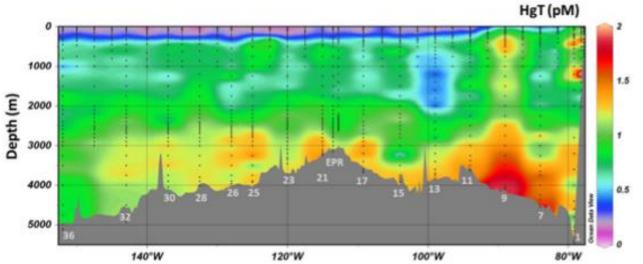
Carl H. Lamborg¹, Chad R. Hammerschmidt², Katlin L. Bowman², Gretchen J. Swarr¹, Kathleen M. Munson¹, Daniel C. Ohnemus¹, Phoebe J. Lam¹, Lars-Eric Heimbürger³, Micha J. A. Rijkenberg⁴ & Mak A. Saito¹

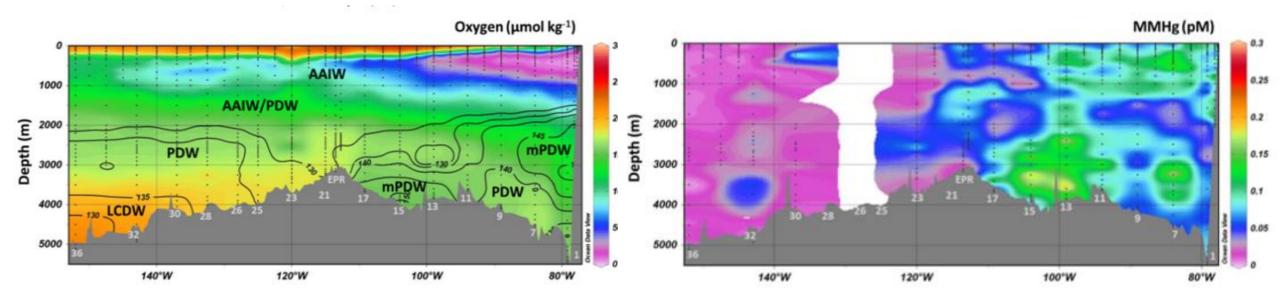
Abstract Monomethylmercury (CH₃Hg) is the only form of mercury (Hg) known to biomagnify in food webs. Here we investigate factors driving methylated mercury [MeHg = CH3Hg + (CH3)2Hg)] production and degradation across the global ocean and uptake and trophic transfer at the base of marine food webs. We develop a new global 3-D simulation of MeHg in seawater and phyto/zooplankton within the Massachusetts Institute of Technology general circulation model. We find that high modeled MeHg concept extra in polar regions are driven by reduced demethylation due to lower solar radiation and emperatures. In the eastern tropical subsurface waters of the Atlantic and Pacific Oceans, the model results suggest that high MeHg concentrations are associated with enhanced microbial activity and atmospheric inputs of inorganic Hg. Global budget analysis indicates that upward advection/diffusion from subsurface ocean provides 17% of MeHg in the surface ocean. Modeled open ocean phytoplankton concern, tions are relatively uniform because lowest modeled seawater MeHg concentrations occuroligotrophic regions with the smallest size classes of phytoplankton, with relatively high uptake of MeHg and vice versa. Diatoms and synechococcus are the two most important phytoplankton categories for transferring MeHg from seawater to herbivorous zooplankton, contributing 35% and 25%, respectively. Modeled ratios of MeHg concentrations between herbivorous zooplankton and phytoplankton are 0.74-0.78 for picoplankton (i.e., no biomagnification) and 2.6-4.5 for eukaryotic phytoplankton. The spatial distribution of the trophic magnification factor is largely determined by the zooplankton concentrations. Changing ocean biogeochemistry resulting from climate change is expected to have a significant impact on marine MeHg formation and bioaccumulation.

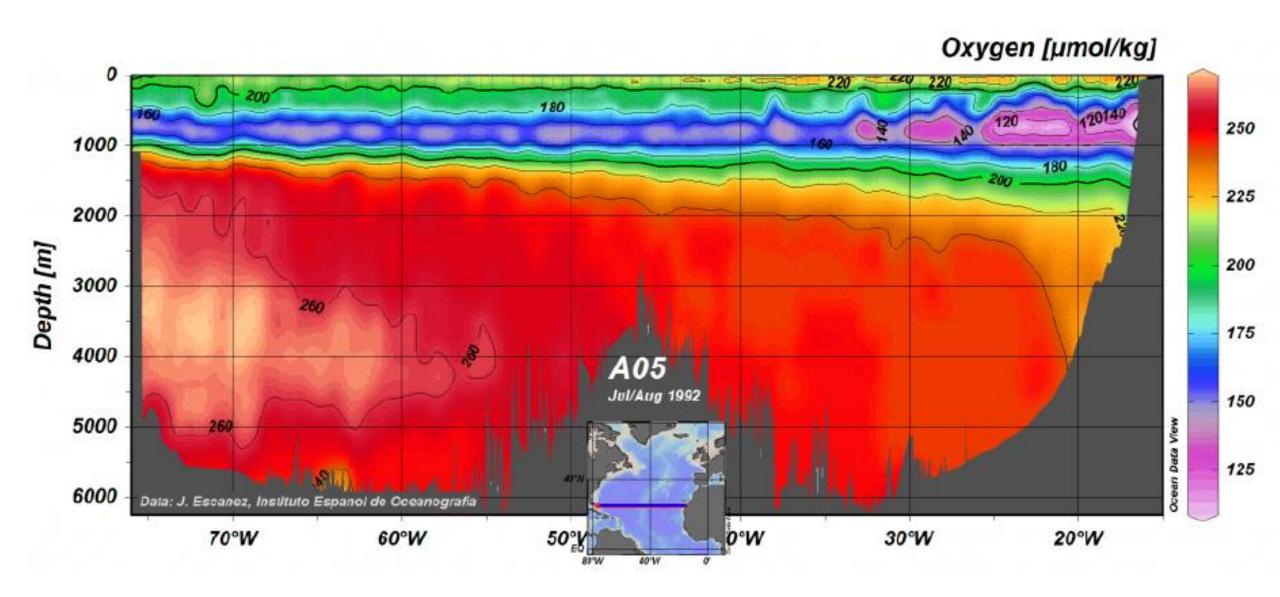
Marine Chemistry

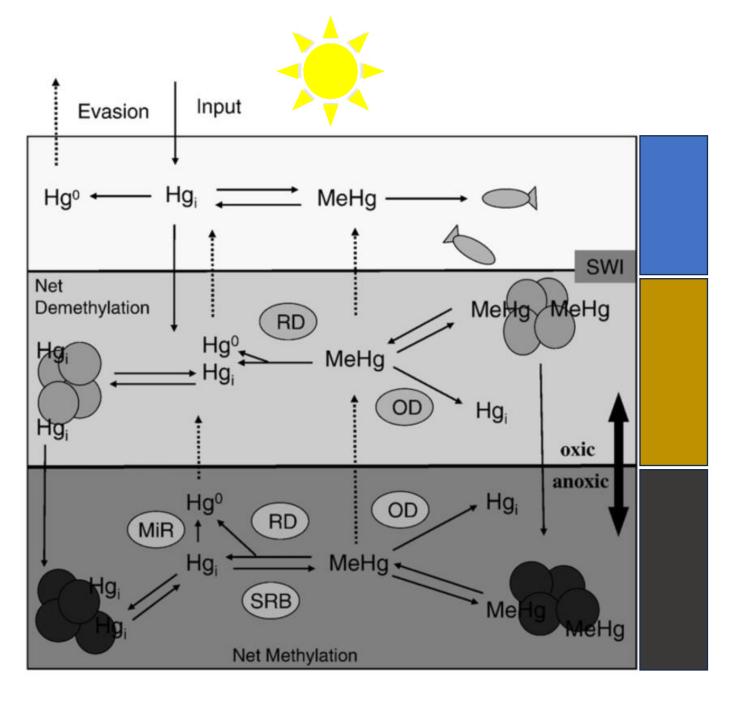
marine CHEMISTRY Valid hers


Volume 186, 20 November 2016, Pages 156-166


Distribution of mercury species across a zonal section of the eastern tropical South Pacific Ocean (U.S. GEOTRACES GP16)


<u>Katlin L. Bowman ^a $\stackrel{\triangle}{\sim}$ $\stackrel{\square}{\boxtimes}$, Chad R. Hammerschmidt ^a $\stackrel{\square}{\boxtimes}$, Carl H. Lamborg ^{b 1} $\stackrel{\square}{\boxtimes}$, Gretchen J. Swarr ^b $\stackrel{\square}{\boxtimes}$, Alison M. Agather ^a $\stackrel{\square}{\boxtimes}$ </u>

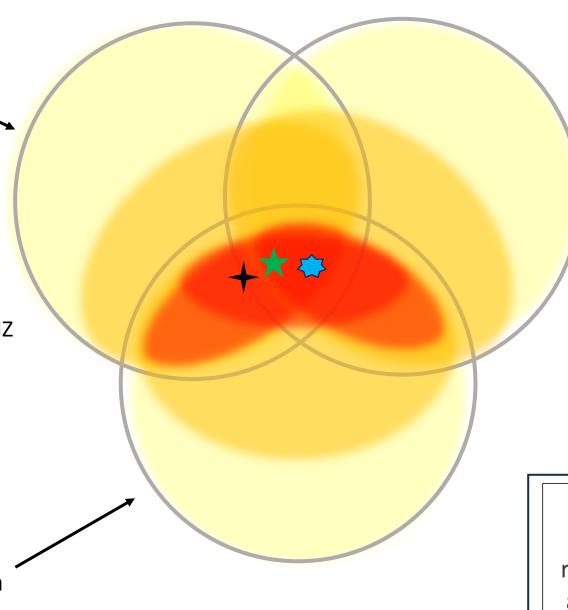

Highlights


- Total mercury was enriched in the Peru upwelling region and up to 20% of the upwelling flux was as monomethyl-mercury.
- Subsurface maxima of monomethyl-mercury and dimethyl-mercury were found in oxic and suboxic water.
- Methylated mercury concentrations were greatest in the eastern part of the section underlying productive surface waters.
- Mercury was not elevated in a metal-rich <u>hydrothermal vent</u> plume extending 4000km west from the East Pacific Rise.
- Deep water below 2500m was enriched with Hg, especially in warm bottom waters in the eastern part of the section.

- Significant organic matter breakdown consumes dissolved oxygen (dO₂);
- Sulfate (SO₄²⁻) + very low dO₂ increases activity of sulfate-reducing bacteria (SRB);
- SRB in the presence of inorganic mercury (Hg²⁺) generate methyl mercury (CH₃Hg⁺) as a by-product of respiration;
- CH₃Hg⁺ is 100× more toxic than Hg²⁺ and is retained in biological tissue to a greater extent than Hg²⁺

PHYSICAL

Thermohaline Circulation (+ time since the Industrial Revolution and significant global increase in coal combustion)


→ = North Atlantic (+ Polar)

= Upwelling Zones and OMZ

= Photic Zone (CMZ)

CHEMICAL

Factors that contribute BOD and result in O_2 consumption (there's no shortage of SO_4^{2-}); consider this spatially

BIOLOGICAL

Single most significant bioaccumulation step is between water column and uptake by phytoplankton

Think of this overview of risk profiles as describing regions of the global ocean and considering residence time (τ) in the oceans